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Abstract. Cluster calculations which model chemisorption on a surface are often 
composed of substrate atoms arranged in a periodic manner. This pseudo-lattice 
symmetry of a cluster is used to reduce the number of 2-electron integrals 
computed in a SCF calculation by evaluating only unique integrals identified by 
lattice displacement vectors. The method, without using any explicit symmetry, is 
shown to be competitive with calculations which utilize point group symmetry. It 
is also demonstrated that the pseudo-lattice method markedly reduces the 
number of 2-electron integrals in multi-layer clusters which have little or no 
symmetry. 
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1. Introduction 

Cluster calculations are proving to be a popular method for theoretically 
modelling chemisorption on surfaces [1]. The clusters typically consist of a few 
atoms arranged as a fragment of the bulk material or surface, chosen so that an 
adsorbate has at least the same near-neighbor environment as that on the 
extended substrate. An attraction of the model is that the calculations can be 
performed using the well established methods of quantum chemistry allowing the 
prediction of adsorbate geometries, binding energies and vibrational frequencies. 
In contrast to the solid state approaches, such as 2-dimensional periodic slabs 
[2], dusters also readily allow the computation of properties for the low 
symmetry adsorption geometries. However, the number of atoms included in a 
cluster is often restricted owing to the computational requirements of the 
quantum chemical method. In an ab initio SCF calculation, the two major 
limitations are the disk storage requirements for the 2-electron integrals and the 
time needed to form and diagonalize the Fock matrix. Several methods for 
simplifying the 2-electron calculation already exist. Many ab initio computer 
packages automatically take advantage of the simplifications associated with 
point group symmetry [3]. As a consequence most cluster calculations are 
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performed with the adsorbate and substrate having high symmetry. Integral 
approximations are another strategy making use of either thresholds to neglect 
integrals [4] or effective core potentials to replace the effects of the core electrons 
[5]. More recently direct SCF methods have been developed where the disk 
storage problem is eliminated by recomputing many of the 2-electron integrals in 
each SCF cycle [6]. For a large molecule or cluster the overhead of the extra 
2-electron calculations per SCF cycle can be balanced against the time saving for 
the ~educed input/output activity. 

In this paper we present a new strategy solely for use in cluster calcula- 
tions which reduces the integral disk storage requirements while main- 
taining reasonable computer time utilization in the SCF part of the calculation. 
Our new method takes advantage of the 'pseudo-lattice' translational symmetry 
of the cluster. In an infinite ordered solid with translational symmetry the 
nuclear coordinates are conveniently specified using the infinite set of lattice 
vectors 

g(nl,  n2, n3) = nl al + n2a2 + n2a3 (1) 

where al, a2 and a 3 are the primitive translation vectors of the lattice. In 
our procedure we make use of a finite sized set of lattice vectors to describe 
the nuclear coordinates of the cluster. Obviously the cluster does not 
have translational symmetry in the group theoretical sense, but we utilize the 
'pseudo-lattice' translational vectors connecting different atoms in the cluster to 
identify and restrict integral computation and storage to those 2-electron inte- 
grals that are unique. The unique 2-electron integrals can be compactly written 
a s  

( ~ , 0  ,u, V 1 I~, V3 ~ V2 q- V3~ , ~  p,~ ,~ j (2)  

where X~ is the ix-th basis function in the g-unit cell. 0 is an origin point and it 
is the lattice vectors v~, v2 and v3 which enable the unique integrals to be 
differentiated. That is, clusters which model chemisorption often have a regular 
arrangement of atoms, and because of matching displacement vectors Vl, v2 and 
v 3 between atoms, many of the 2-electron integral values between the cluster 
orbitals are repeated. In our 2-electron integral evaluation we only process the 
finite set of lattice vectors generated by the 'pseudo-lattice' translation vectors. 
To keep our algorithms simple we have not considered using local rotation or 
reflection operators, these would further reduce the number of integrals needing 
to be computed. Hence our integral storage requirements are not directly related 
to the point group symmetry of the cluster. Once all the pseudo-lattice atoms 
have been treated, further integrals between basis functions on additional atoms, 
such as adsorbates or substrate atoms distorted from their periodic positions, 
and the undistorted lattice can be computed to augment and complete a cluster's 
integral list. 

The 'pseudo-lattice' method involves two steps: (1) searching for, computing 
and storing the unique 2-electron integrals; and (2) unpacking the 2-electron 
integrals and forming the Fock matrix. Both of these steps are described in the 
next section. Our procedure has several features in common with the methods 
used by Pisani et al. to treat the integrals needed in Hartree-Fock ab initio 
calculations on 2- and 3-dimensional crystalline solids [7]. However, our proce- 
dure is complicated by having incomplete 'stars' of lattice vectors when searching 



'Pseudo-lattice symmetry' in duster calculations 233 

for the unique 2-electron integrals due to the finite cluster sizes. In Sect. 3 a 
comparison of  the integral storage savings possible by using the 'pseudo-lattice' 
method with those obtained using point group symmetry for different sized H 
and Be clusters is given. Concluding remarks are given in the final section of 
the paper. 

2. Method 

The first step requires the definition of  primitive translation vectors {a~, a2, a3} 
which designate unit cell positions used to build the duster. The unit cell 
may contain one or more nuclei with one or more basis functions. However, 
since the method processes only the displacement vectors between unit cells 
some of  the cells may be left empty, such as in the case of a vacant site. Thus 
in the treatment of a fragment of a hexagonal close packed (hcp) lattice, rather 
than using a unit cell containing two atoms, it is easier to use primitive vectors 
from two interpenetrating simple hexagonal lattices. These simple hexagonal 
lattice unit cells now contain at most one atom, with several of  the unit cells 
remaining empty. The coordinates of the atoms forming the cluster are deter- 
mined from Eq. (1) where the appropriate integer values n~, nz and n 3 are 
selected. 

The unique positive displacement vectors between unit cells are found next. 
A displacement vector is the difference between two lattice sites 

VI2 = g 2  - -  g l  

= mla I + m2a 2 --k rn3a 3 (3) 

and is taken to be positive when rn 3 > 0, or if m 3 = 0 then when m2 > 0, or if 
mE = rn 3 = 0 then when ml/> 0. To every positive displacement vector, apart from 
the zero vector which has rn I = m2 = m3 = 0, there is a corresponding negative 
vector pointing in the opposite direction. The definition of  a positive displace- 
ment enables an ordering for the vectors, v I > v2 when v ~ -  v2 is positive. A 
duster 's  set of unique positive vectors are determined by looping pair wise over 
all the lattice points forming the cluster and by keeping only the distinct positive 
displacement vectors. For  example, in a 2-dimensional cluster composed of  a 
n x n square array of  unit cells there will be n 2 + ( n -  1) 2 unique positive 
displacement vectors. The n 2 comes from counting all the possible displacements 
from a unit cell in the bottom left corner of  the array to any other unit cell in 
the array and includes the zero displacement with itself. The (n - 1) 2 term comes 
from displacements in the - y  direction starting from the unit cell in the bottom 
right corner and connecting to the other unit cells in the array except for those 
unit cells on the bottom row and right edge of  the cluster. To facilitate finding 
the unique 2-electron integrals it is necessary to rearrange the set of unique 
positive displacement vectors into ascending order with the first element being 
the zero vector. 

['O'VlJ~V3"v2+v3) distinguished by the dis- The unique 2-electron integrals ~z~,,~ j,~x z ,  , 
placement vector set {v~, v2, v3} can now be computed. The basic idea is to 
search through all the possible Vl, v2 and v3 combinations and examine whether 
the 2-electron integral actually occurs for the cluster; if it does then the integral 
is computed. The Fortran code with the required loop structure has the following 
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form: 

do/2 = 1, number_displacement_vectors 
v 2 = ordered_vector(i2) 

do i l =  1, i2 
Vl = ordered_vector( il) 

do/3 = 1, number_displacement_vectors 
v3 = ordered_vector( i3) 

V4 ~ V3 "~  V2 - -  101 

if v4 ~ 0 then 
compute unique integral I(v~, v2, v3) 
else if v~ = v2 then 
compute unique integral I(Vl, v2, v3) 

end if 

v~ = v3 + vl - v2 
if v~ < 0 and 113 ~ V~ then 

compute unique integral I(v2, vl, v3) 
end if 

end/3 loop 
end i~ loop 

end i: loop (5) 

The array ordered_vector contains all the unique positive displacement vectors 
stored in ascending order. The two outer loops are arranged so that v2 i> v~ t> 0, 
with v2 taking all the allowed positive unique displacement vector values. The 
logic of the loop structure is best explained using Fig. 1, where the 2-electron 
integrals are represented by a shape. Displacement vectors v~ and v2 connect the 
basis functions associated with electron 1 and 2 respectively; v3, gives the 
displacement between the feet of v~ and v2. Figure la,b are what we call 'direct' 
shapes and the vectors v4 and v~ have been included to connect the heads of v~ 
and vz. It is the repeat of the same shape on the cluster which allows a reduction 
in the integral storage. To each direct shape there is an 'inverted' shape, and 
these are illustrated in Fig. lc,d. The inverted shape integral has the same value, 
to within a sign, as the direct shape integral. The loop structure in Eq. (5) 
initially picks out the direct shape shown in Fig. la with v2/> v~, and always 
results in v4 i> 0. If  v~ and v2 are interchanged, as in Fig. lb, and v~ i> 0 then Fig. 
ld shows that the corresponding inverted shape is equivalent to one of the direct 
shapes given by Fig. la. Sometimes the interchange of Vl and v2 generates the 
shape shown in Fig. le with v~ < 0. Drawing the inverted shape with v~ positive, 
Fig. If, still results in Vl and v2 being interchanged. Hence, in addition to the 
unique 2-electron integral represented by the direct shape in Fig, la, another 
unique 2-electron integral is generated when v~ is negative. The purpose of the 
two if blocks in Eq. (5) should now be apparent. The first if block drives forming 
the direct shapes in Fig. l a. If  v 4 = 0 the integral is not computed because it 
matches one of the inverted shapes of Fig. lc. The exception to this is the 
integral with v~ = v 2 and V 3 ~---V 4 = 0 which occurs once for each v 2 . The second 
if block checks for negative v~ when v~ and v2 are interchanged. The additional 
test v3 ~< v~ again avoids computing more than one unique integral because, as 
Fig. I f  illustrates, the inversion of the direct shape le results in a negative v3. 
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Fig. 1. Shapes o f  the 2-electron integrals derived from the unique lattice displacement vectors vl, v 2 
and v 3. a Direct shape; b Another  direct shape but  with vt and v 2 interchanged; e Inverted shape of  
a; d Inverted shape o f  b but  which is equivalent to a; e Another  type b direct shape but  with v~ < 0; 
f Inverted shape of  e which does not  produce a type a direct shape 
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The actual compute unique integral I(vl, v2, v3) refers to a subroutine which 
checks if the displacement vectors v~, v2 and vs match atomic positions on the 
duster. If the integral is allowed then the shell numbers of the basis functions 
located in the appropriate set of unit cells are passed to the integral evaluation 
subroutines. The integrals are stored using the packed basis function labels to 
identify the integral. This completesthe description of computing and storing the 
unique 2-electron integrals. 

Forming the Fock matrix involves expanding the unique 2-electron integral 
list to the full set of integrals. Like most ab initio packages the basis function 
labels are unpacked first, but now these labels are also used to obtain the positive 
displacement vectors Vl, v2 and v3 associated with each integral. The program 
then finds all the different positions where the shape Vl, v2 and v3 can fit on the 
cluster and generates appropriate basis function labels to be used in adding the 
2-electron integral to the Fock matrix elements. It is this step of locating the 
integral shapes on the cluster which adds a time overhead to the SCF calculation. 
However, because of the shell structure of the integrals, several integrals with the 
same displacement vectors can be processed simultaneously. Generally, for each 
unique integral shape there are two types of contributions to the Fock matrix. 
There is always the direct shape, but in many cases a contribution from the 
inverted shape is also needed. The inverted shape, which arises from the 
'pseudo-inversion symmetry' of the cluster, is not added to the Fock matrix when 
it is the same as the direct shape. This occurs when either vl = v2 or v3 = -v4. 
The sign of the integral value of the inverted shape is changed for each p or f 
basis function in the integral. 

The method has been programmed into the HONDO package [8]. Changes 
were made in the integral driver routine and the Fock formation routine. 

3. Results 

We now illustrate the effectiveness of pseudo-lattice symmetry in reducing the 
number of 2-electron integrals required to perform a SCF calculation on a 
cluster. We have performed calculations on different sized H and Be clusters and 
for reference make comparisons with the number of 2-electron integrals needed 
when using various point group symmetries. For each duster, identical energies 
are obtained at each SCF iteration, confirming that the pseudo-lattice symmetry 
approach does neither approximate nor neglect any of the 2-electron integrals. 

For calculations with only a single basis function at a lattice point, Table 1 
shows that the pseudo-lattice method gives an appreciable reduction in the 
integral storage requirements. Table 1 lists results using pseudo-lattice symmetry 
and point group symmetry for different H atom clusters which model the (100) 
surface of a simple cubic lattice. Each H has a single contracted STO-2G s basis 
function centered on it and the nearest H - H  distance is 0.6/~. In the single layer 
clusters, the H4, HI6 and H36 pseudo-lattice calculations are competitive with the 
Cs, C2~ and C4v symmetries, respectively. Similarly, for the multiple 4 x 4 layer H 
clusters, the number of different 2-electron integrals needing to be computed in 
pseudo-lattice procedure does not increase as rapidly with cluster size as it does 
for the calculations using point group symmetry. Obviously the larger a cluster, 
the more times a 2-electron integral value will be repeated. For example, in the 
2 layer H32 pseudo-lattice cluster calculation the set of 2219 unique 2-electron 
integrals, evaluated for the single layer H~6 cluster, would also be found only 
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Table 1. Comparison of the number of 2-electron 
integrals computed using pseudo translational sym- 
metry only with calculations using point group sym- 
metry for single and multiple layer clusters 
composed of H atoms arranged as fragments of a 
simple cubic lattice 

Single layers 2 x 2 4 x 4 6 x 6 

Pseudo lattice 28 2219 29,914 
C 1 55 9316  222,111 
C s 31 4708  111,303 
Czv 19 2404 55,899 
C4~ 13 1272 28,314 

4x4Layers 4 x 4 x l  4 x 4 x 2  4 x 4 x 3  

Pseudo lattice 2219 30,542 129,269 
Cl 9316 139,656 692,076 
Cs 4708 70,024 346,476 
C2v 2404 35,208 173,676 
D2h 2404 17,800 89,164 

Table 2. Comparison of the number of 2-electron integrals computed using 
pseudo translational symmetry only with calculations using point group 
symmetry for various hcp Be dusters 

Cluster 2 x 2 3 × 3 4 x 4 3 × 3 × 2 

Pseudo lattice 6,033 93,349 503,123 2,166,840 
C1 11,656 2 7 2 , 6 9 1  2 ,269 ,651  6,967,168 
C s 6 ,294 1 3 9 , 7 0 2  1 ,165 ,525  3,556,408 
C2v 3,445 71,965 597,703 - -  

once. The remaining 28,323 H32 integrals are for integrals whose component 
orbitals always span the 2 layers of the cluster. When point group symmetry is 
used, apart from the D2h calculation, the set of single layer H16 2-electron 
integrals are duplicated twice in the double layer Ha2 cluster, once on the top 
layer and once on the bottom laye r. The third mirror plane of the D2h point 
group parallel to the H16 layer eliminates this repetition of these 2404 single layer 
integrals in the double layer H32 calculation; however, in the triple layer H4s 
cluster the 2404 single layer integrals are repeated twice, once by the outer H16 
clusters and again by the middle H16 layer. 

A number of cluster [9-14] and extended 2-dimensional slab [ 15-17] calcu- 
lations which model the Be(0001) surface of the hcp lattice have been reported 
previously. Differences in the preferred site and binding energy for H adsorption 
on the Be(0001) surfaces predicted by cluster and slab calculations do occur. 
However, in a recent cluster study involving multiple H adsorption we obtained 
results similar to the slab calculations when the cluster's H coverage was 
simulated as a monolayer [15]. Work is in progress to extend this study of 
multiple H adsorption on Be(0001) by using the present pseudo-lattice method. 
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In Table 2 we present a comparison of the number of 2-electron integrals 
computed for different sized clusters consisting of only Be atoms. The calcula- 
tions are performed with the minimal STO-3G basis set developed by 
Bauschlicher et al. [9] which consists of 2s and lp orbitals resulting in 5 basis 
functions per Be atom. 2-Electron integrals with values less than 10 -9 were 
neglected. The pseudo-lattice calculation for the multiple layer clusters can be 
performed in several ways. The smallest unit cell for a hcp lattice contains 2 
atoms and the pseudo-lattice method could still work with a cluster built up from 
these unit cells. However, in the double layer Bel8 cluster listed in Table 2, the 
top layer (A) lattice points are generated by 

ga = 3nl al + 3n2a2 + n3a3 (6a) 

and the bottom layer (B) by 

gB = (3nl + 1)al + (3n2 + 1)a2 + (3n3 + 1) + n3a3 (6b) 

where the primitive vectors are 

1 fx / /3  a 0' ~ 
a l = "~ ~ " ~  a, ~, 

l:x//3 a a ) 
a2 = ~ \ - - ~ -  , - 2 '  0 (7) 

a 3 = (0, 0, c) 

with the in-layer Be-Be separation, a = 2.2866/~, and the A - B  interlayer 
distance, c = 1.792/~, being taken from the bulk value [19]. The single layer Be 
cluster coordinates are produced by Eq. (6a). The coordinates of a Be cluster 
with many layers can be generated by the appropriate repetition of the A and B 
layers given by Eqs. (6a) and (6b). An important feature of the pseudo-lattice 
method is that it only processes the displacement vectors between lattice points. 
This means again, like the H clusters, that the 93,349 2-electron integrals 
evaluated for the single layer Be 9 cluster are only computed once for the double 
layer Be18 cluster. 

Table 2 shows that the pseudo-lattice method compares favorably with the 
higher point group symmetry calculations, with the pseudo-lattice method being 
more effective at reducing the integral storage requirements as the Be clusters 
become larger. The double layer Bei8 calculation is particularly noteworthy 
because the ABAB stacking of the a hcp lattice eliminates the possibility of a 
multiple layer cluster having C2v point group symmetry. A similar point group 
restriction will occur in multiple layer cluster models of the (I 11) surface of a 
face centered cubic (fcc) lattice. Even further reduction in the integral storage 
could be achieved by extending the present algorithms to include local point 
group symmetry. However, the complexity of such an algorithm and the over- 
head associated with unpacking these point group symmetrized integrals would 
probably outweigh the advantage of using the present method. 

4. Conclusion 

Clusters calculations using the well developed techniques of quantum chemistry 
are a convenient method for modelling low adsorption sites on a surface. Often, 
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however, the low symmetry of the cluster makes the calculations computationally 
demanding. In this paper we present a new method for reducing the number of 
2-electron integrals in the calculation. This 'pseudo-lattice' method takes advan- 
tage of the ordered arrangement of atoms often used to form the cluster. The 
reduction in the number of 2-electron integrals is achieved by processing the 
displacements between the lattice points on the cluster. Providing the cluster has 
an underlying set of primitive translation vectors connecting the different atoms 
composing the cluster a reduction in the number of 2-electron needing to be 
computed can be achieved regardless of the symmetry of the cluster. 
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